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Based on a genuine multidimensional numerical scheme, called the Method of
Transport, we derive a form of the compressible Euler equations, capable of a lin-
earization for any space dimension. This form enables a rigorous error analysis of
the linearization error without the knowledge of the numerical method used to solve
the linear equations. The generated error can be eliminated by special correction
terms in the linear equations. Hence, existing scalar high order methods can be used
to solve the linear equations and obtain high order accuracy in space and time for
the non-linear conservation law. In this approach, the scalar version of the method
of transport is used to solve the linear equations. This method is multidimensional
and reduces the solution of the partial differential equation to an integration process.
Convergence histories presented at the end of the paper show that the numerical
results agree with the theoretical predictions, 1998 Academic Press

1. INTRODUCTION

For the class of scalar conservation laws, the theory of convergence and stabil
well established for a large number of numerical methods. This is also true in vie\
error estimates and convergence properties, i.e., the order of convergence. Even for
dimensional calculations, there are more and more attempts to design high order scl
[1,7,12].

For the class of systems of conservation laws, the situation is quite different. For |
of the existing schemes, there are only heuristic arguments, that these methods are
same order as their scalar counterparts. Some approaches, like the Strang [10] splitti
multidimensional computations, are limited to second order accuracy by construction

To obtain a high order method for systems, it is necessary to take into account all so
of errors. In several space dimensions, there is mainly the dimension splitting error
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restricts the order to at most two. But even in one space dimension, the error arising fror
linearization of a non-linear system plays an important role. This kind of error is introduc
if the method relies on an approximate Riemann solver, e.g., flux-difference or flux-vec
splitting.

Based on the derivation of a multidimensional method, called the Method of Transp
(MoT), a new form of the compressible Euler equations called the advection form is
troduced that allows a multidimensional linearization, i.e., decoupling into a number
advection equations.

This formalism allows us to compare the Taylor expansion of the exact solution at tir
t + At after one time step with the expansion of the exact solution of the linearized eq
tions, in order to obtain the splitting and truncation errors. It simplifies a rigorous err
analysis and makes it visible. This decomposition also provides a general frame work
the solution of hyperbolic conservation laws, since the solution of a non-linear syst
is reduced to the solution of linear scalar equations if such a decomposition exists. |
also independent of the numerical method or the space discretization used to solve
linear equations, i.e., finite volume or finite element methods on structured or unstructt
grids.

A direct comparison of the linearized equations and the non-linear Euler equations sh
that the local approximation error@(At?), i.e., we obtain a first order approximation of the
non-linear system independent of the spatial discretization. Because of the special stru
of the error terms they can be integrated into the linear equations to eliminate the resul
approximation error. These correction terms, added to the scalar advection equatior
not change the character of the equations, nor is their influence limited to a second o
correction. It has been verified that these correction terms exist for the Euler equatior
least up to third order accuracy.

In this paper we first recall the process of linearization in one space dimension for
flux-vector splitting methods [9]. Then, using the ideas of the MoT we derive a simg
decomposition of the multidimensional Euler equations into a set of linear advection eq
tions. To obtain the linearization error in the smooth part of the solution we compare |
Taylor expansions of both solutions. We will explain this procedure for the conservation
mass in 1-D only and give the results for the 1-D and the 2-D case.

We then briefly introduce a numerical algorithm to solve these equations efficiently ¢
to high order of accuracy. In some numerical experiments at the end, we verify the thec
ical results. Convergence histories for smooth solutions in one and two space dimens
illustrate the influence of the second order correction terms. A solution of a Mach 10 fl
indicates the robustness of the method even for strong shocks.

2. LINEARISATION OF THE EQUATIONS IN 1-D

For a better understanding of the multidimensional linearization process we first expl
the same steps in one space dimension. For this we have to stress the idea of flux-v
splitting again. This time we focus on the linearization of a non-linear system.

The one-dimensional compressible Euler equations in conservation form can be wri
as

9 9
— U+ —FU) =0, 1
o +8X() 1)
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whereU is the state vector of the conserved quantitiesktd) is the flux given by

m
Ut + p)

Here,p is the mass densityn = pu is the momentuni is the total energyy is the velocity,
andp is the pressure related tbby the equation of state

2
p=(y—1>(E—p“5>.

m3>

The ration of the specific heat capacitiesakes the value 1.4 for air.
The quasi-linear form of (1) is given by

oF
Ut + EUX =: Ui + AUy = 0.

Since Eq. (1) is hyperbolic, the matrixhas only real eigenvalues and a full set of eigenve
tors. Thus, the Jacobian matixcan be diagonalized by the matfiXof right eigenvectors.
We have the relation

A=RAR!' o A=RAR,

whereA = diag(A1, A2, A3) = diag(u + ¢, u, u — c).
The homogeneity of the Euler equations can be used to write td-fas

aF 3
F(U)mu — AU=RAR U= ;(airi)ki, 2)

for any state vectod. Here,R = (ry, I, r3) is the matrix of right eigenvectors @&&. The
vectorae = (a1, az, 3)' := R~*U andc is the speed of sound, given b§= yp/p. Using
(2) and the fact that

3
U=LU=RR'W =7 (air), (3)
i=1

i.e.,U can be decomposed into the same vectens ) as the flux, (1) becomes

2. /9 9

Z: (at(airi) + ax((dih)h)) =0. 4)
Equation (4) is called the advection form of the Euler equations. Note that even thc
(4) formally looks like a sum of advection equations, Egs. (1) and (4) are the same.
approximation has been made. Writing the full dependencies

3

a a
> (E(ai(U(X, DIri(Ux, 1)) + oy (@ U, D)ri (Ux, H)Ai (U(x, t)))) =0

i=1
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FIG.1. Decomposition ofJ at timet, and transport with characteristic speed. The gray region has passed
cell boundary from left to right during timg,; — t,. Only the right-going flux is indicated.

shows the non-linearity of the system. In the Steger—Warming splitting the different ter
in the sum are treated separately. Each part is propagated with its characteristic spe
shown in Fig. 1. From the mathematical point of view the dependencies are changed t

S0 = (@)U 1),  ax ) =2iUXt)

together with the evolution equations

ad d .
_S(X,t,t)+_(S(X,t,f)a(x,t))=O, | =17 25 3'
ot X

These are now three linear systems or a total of nine scalar advection equations of the:

d 9
Ew(x, 7))+ a—x(a(x)a}(x, 7)) =0, (5)

wherew is one of the components gf i =1, 2, 3, anda is the corresponding characteris-
tic speedx;,i =1, 2, 3, which, in this process, becomes a function of space only. Tt
resulting numerical scheme is consistent since the sum of all equations in (5) gives
After solving the decoupled scalar equations for a small time Ategn approximation of
the solution of the non-linear system is obtained by adding up the linear solutions. Itera
of this propagation step with updated values;aindA; yields the numerical scheme. This
can be interpreted as a Huygens principle for short times, i.e., interactions between diffe
“waves” are neglected. The non-linear coupling takes place during the averaging proc
in the finite volume discretization.

3. LINEARIZATION OF THE 2-D EULER-EQUATIONS

As we have seen in [2], the above approach is not possible in several space dimens
For example in the 2-D case, the equations have the form

ad ad
_U+_

0
T aXFl(U) + a—sz(U) =0, (6)
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with
o pu pv
2
n puv pve+p
E u(E + p) v(E+ p)

Here,m = (m, n)T is the momentum and = (u, v)" = (m/p, n/p)T is the velocity. The
pressurep is given by

2 2
|0=(J/—1)<E—pu JZFU )

The equations are still hyperbolic and a linearization of the form

oF oF

ut+a—Ulux+a—U2Uy=o
is possible, but the Jacobian matricesgefandF, cannot be diagonalized simultaneously
A number of methods use the one-dimensional decomposition in (4) in each space c
tion. Let A = R"AR be the decomposition of the flux ik-direction with eigenvalues
A = diagry, ..., Ag) aNdE = S 1BSthe decomposition of the flux ig-direction
with eigenvalueE = diag(é, ..., &). WithR = (r1,...,r4), R7IU = (a1,...,a0)7,
S=(S,...,),andS*U = (B4, ..., Ba)T we can decompose the two one-dimension:
problems into

4
> (@it + (i eiri)x) = Ut + F1(U)x,
i=1

s 7
D (Bis)+ E(Bis))y) = U + FoU)y,

i=1

which corresponds to eight waves. Applying the consistency criteria for multidimensic
wave decompositions in [2] to (7) directly shows that

4
Z(Olifi + gis) =2U # U.

i=1

Thus, the decomposition is not consistent in this form. With the simple modification

1< 1
> <Z(Otifi)t + (2 (Otiri))x> = U+ R
i=1

1< 1 ©
S| 2B+ @A)y | =SVt +Fa(U)y,

i=1

we obtain a proper decomposition. The actual operators are almost identical to the
dimensional ones, except for the factor 2 in front of the characteristic speeds. This exp
the lack of stability observed for the “donor” cell approach. The propagation speeds s
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to be twice as high thus resulting in a reduction of the possible time step to 1/2. In th
space dimensions the reduction would be 1/3. The same results were obtained by a |
stability analysis in [6].

The MoT derived in [2] provides the necessary information to find a linearization
the multidimensional case. We are not interested in a direction wise decomposition wt
directly leads to the dimensional splitting approach. Instead, we are seeking an approx
tion of the non-linear system by a set of linear but multidimensional advection equatic
equivalent to the 1-D case. First, we will rewrite the Euler equations in a more conveni
form. Let

6T
EU)y=Uu"+| L |p )

T

cl

be the(N +2) x N matrix representing the multidimensional flik denotes the dimension
of the spacel is theN x N identity matrix, and is the N-dimensional vector of zeros.
Then the general form (6) can be written as

Ui+ V- (EU) =0, (10)

where the divergence acts on the rowgof

The basic idea generating the acoustic waves in MoT was a Huygens principle, i.e.,
superposition of spherical shaped waves. To find a decomposition, a description by pl:
waves in needed, since this can simply be modeled by advection operators. The MoT
the definitions

~T
P p
1 ~ -1 ~ pC
RiU ==t |, RW=L"Z| o0 |, ww=21|1],
Y\ pH Yoo\ pluR2 o

whereH = (E + p)/p denotes total enthalpy amds the speed of sound. Notice that the
newly introduced matrix structure af is similar to the part in front of the pressure in the
multidimensional flux (9). This structure naturally arises in the derivation of MoT.

The solution operator for a multidimensional scalar advection equation of the form

w+V-(@a)=0 (11)
is given by
oX,t+ At) = /a)(f/ (X — Z(y, At)) dy, (12)
RN
whereZ is the solution of
J . . IR
5, 2% 1) = 8@RX. 1)) (13)
T

for sufficiently smooth velocity@. Note that the operator generating the acoustic and a
vective waves in MoT includes a similar structure. It is obvious for the wéwvgiven
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as
UK, t+ At) = /RZ(U(YI, )8(x —Z'(U, y, At)) dy. (14)
RN

The advection velocity can be identified as flow veloditgince is the solution t@ = Q.
In the waveC™ (andC™), defined as

CT(X, t+ At) = @ / /Rl(U(y,t))s(i—?(u,y, At, i) ds dy,
S(1) RN

with S(1) the unit sphere irRN, the same operator exists. The inner integral formall
looks like the advection operator with velocﬁ'g(u, y, T, i) = U+ ci. The outer integral
averages over all directioiiis SinceC* andC~ use the same pa#i we can combine them
to one wave

CH,t+ A =CTX t + At) +C (X, t + At)
~ s | JRUED) + LUGD) - S& - F(U.T At R ds .
S(1) gV (15)
The advection operators in (14) and (15) formally connect the waves to the processes
(Rt + V- (Rl') =0
for the wavel/ and

(Ri+ LA} + V- ((Ri+ LA)G+ci))=0 Vie S

for C. This allows us to rewrite the Euler equations (10) as

9 <R2+m/(R1+NLn)dS>+V (Rzu +/(R1+NLH)(U+C”) dS)Z
S(b S
(16)

This can easily be verified, sin€g, R,, andL do not depend oi, the relations

Ri+R,=U and /Lﬁds:O
S
lead toU in the first part. From this we also get that

. 1 ~ . .
HU' + DI Ry(li+ch)ds=Ui"

S(1)

while the parts includind. give

N / oo LT
— LN+ cn)' ds=Lc
IS(D)|

S(1)
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FIG. 2. Actual propagation directions using 1-D operators and four integration points on the Monge cone

which equals the matrix in (10). This is one advection form of the Euler equations. T
presence of the integral reflects that the system is decomposed into infinitely many adve
equations. This of course leads to a large amount of computational work in the numer
implementation with little hope of an extension to higher order of accuracy. The integ
in (16) over the unit sphere can be approximated by an quadrature rule with given sup
pointsX;. This directly leads to finitely many propagation directions. In contrast to tF
splitting approach in (7) and (8), the directions ar aligned with the coordinate axes
(see Fig. 2). A more general form of the decomposition (16), with finitely many directior
reads

1 k
R+ V- Reli") + 2> (Ri+qLii) + V- (R +gLit)(@ +7ic)) = 0. (17)
i=1

This is a different advection form of the Euler equations.
The consistency relations in [2] become the simple form

k
U=R2+%ZRl+qLﬁi (18)
i=1
k
0=>) i (19)
i=1
k K K K
—1= ﬁ|ﬁ|T or Zni,jni,k = —3“(. (20)
a i=1 i=1 q

In two space dimensions, three support points would be enough for the quadrature rul
fulfill the above relations. To retain symmetry between the two coordinate directions, fc
directions are used. Figure 2 shows the situation with the choice

ve (o)) (o) (S}
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where the points are on the Monge cone. With the additional assuniptitip = 1, it is
clear thatg = N.
It turns out that it is an advantage to use support points that are outside the Monge ¢

OB @

has already been used in ([2]). The piecewise constant funétios the superposition of
the four wavedi;. Applying (20) to this decomposition gives= 1, independent of the
spatial dimension. It can be shown that this is the only choice tfat

(a) collapses to the 1-D method for a grid aligned 1-D problem;
(b) has the same time step restriction as the 1-D method, i.e.,

AX
(lul+co)

At <

The advection form in (17) allows us to proceed in the same fashion as for the 1-D
in (4). The dependencies are removed by defining the quantities:

(X, t,0) := Ra(U(X, 1))
S, t,0) = %(Rl(U(f(, ) + gL(U(X, t)iy), i=12...,k

and the associated velocities

Bo(%, 1) 1= G(UX, 1))
3 (X, 1) = GUR 1) +cUX A, i=12...Kk

The corresponding evolution operators are given by

%s(i, L) +V- (SEtLDE XD)=0, i=01...k (22)

which reduces the problem to the solution of 20 linear scalar equations. An approxime
of the solution at time + At is obtained with

k
UR t+ A =) St At).
i=0

Note that even though the basic intention was the derivation of a new multidimensic
method, we are now left with a representation of the solution operator for the non-lir
Euler equations as afinite sum of linear operators. This representation needs no knowle
the actual space discretization or of the numerical method used to solve the linear equa
This enables arigorous error analysis of the splitting error. We will assume in the next se
that there is a numerical method that provides the solution of the linear equations to
order necessary for the investigations.
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A necessary condition for this decomposition to be stable is the stability of the numeri
solution of each linear equation. Assuming that we have a stable method of the lin
equation for

Atai]-

max
Xj

J

<

if @ is the advection speed, then the method is stable if the Monge cone lies within
neighboring cells. The scalar method in Section 5 has exactly this property. It turned
that this condition was also sufficient for all the numerical examples we computed.

4. ERROR ANALYSIS

To obtain the error due to the linearization process, we compare the Taylor expansior
the solution in (10) with the sum of solutions in (22) after time In principle, there is no
difference between the expansions in one and two dimensions and therefore we illus
this process for the equation of mass conservation in the 1-D case only.

For the density after timét we get

At?
p(X, to+ At) = p(X, to) + Atpe(X, to) + TP’H(X» to) + O(At?)

and with the Euler equations the time derivatives can be replaced by spatial derivatives,
pr = —(pWx,
2
2 2, C
Pt = (=Mt = (pU” + Plxx = <P (U + )> .
J/ XX

To advance the solution in terms of the linearized equations we first decompose the del
at timetg into

. 1 y—1
P (X, to) = p1(X, to) + p2(X, to) + p3(X, to) with p1 = p3 = 5/0 andp; = TKJ-

For each parp; we consider the advection equations

(p1/3)t + ((UEC)p13)x =0 and  (p2)t + (Up2)x =0,

which leads to

(p1/3)t = ((U £ C)p13)x,

(p1/3)it = (UL C)((U £ C)p1/3)x)x,
(p2)r = —(Up2)x,
(P2)rt = (U(UP2)x)x-

Since(p1 + p2 + p3)t = —(U(p1 + p2 + p3))x = —(Up)y, the first order part is equal in
both cases, which proves consistency. In the second order term we get

Pt — (p1+ p2+ Pt = —<%(VUUX + ch)> #0 (23)

which shows accuracy of first order only.
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A closer look at the structure of the coefficients suggests the use of correction tern
the advection equations. The choice of

~ . At
P13 = p13 £ K’ with k? = _TS(VUUX +ccy)
instead ofpy/3 eliminates the error in (23). With

p (X, to+ At) — (B1(X, to + At) + p2a(X, to + Ab) + p3(X, to + At)) = O(AL?),

we get a second order approximation in smooth regions of the solution. The same ane
can be done for the other components of the state vector in one dimension and also |
2-D case. The resulting correction terms are

Atp
k? = _E(VUUX +cC),

At
K™ = —— Py = 2)cux + ucy) + Uk,

Atpc u?
KE = - — 77 - kM — — kP
2 — 1) (Uuy —cc) +u >

in the 1-D case and

Atp

kf = ———
2c

iy

Atp
ko = —E(V(va + vvy) + CCy),
K = 2P 1 4
1=, (O = Dy + ) + ey +uG - cu +uky,
Atp
kKM — —"(cu uks,
5 2y (cuy) +
At
ki = T;(CUX) + vky,

At
Ky = —Z—Jf(c(y — 1)(Ux + vy) + UC + vCy — Cvy) + vkKj,

Atpc u? + v?
kE = —Wp_l)(uux + vuy — €G) + uky" + vk{ — Tki’,

Atpc u? 42
kS = _Zy(yp—_l) (vvy + Uvg — €Cy) + UKZ' + vkJ — Tkg’

in the 2-D case with the special choice (21) for theln the linearization (22) the matrix

L has to be replaced ly + K whereK = (ky, k2). As mentioned before, the correction
termsK, depend on the choice of the vect@ksbut not on the numerical method used tc
solve Egs. (22).
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5. NUMERICAL SOLUTION OF THE SCALAR EQUATIONS

The idea of transport applied to a linear scalar conservation law basically governs
behavior of the exact solution. In the constant coefficient case, the equation has the fo

wr+a- Vo with @ (@, 0) = wo(X) (24)
and the solution is simply the shift with velocidyi.e.,
o(X, 1) = wo(X — ta).

In the finite volume context, the quantity

1 - =
o = I /a)(X, t,) dX (25)
Vi

denotes the averaged value ofin the control volumeV,. Because of the shift of the
solution, the average valug** at timet,, + At is a combination of the values of' and all
the surrounding neighbors. Figure 3 sketches the behavior if the veldaityin the upper
left quadrant. This behavior is used by other authors to design multidimensional meth
In [1, 6] a representation of this situation by one-dimensional operators is used to ext
the idea to the system case.

The situation here is different, since we have already derived a decomposition of
non-linear system into advection equations. All that is left is to design a robust and h
order method for a linear scalar equation. Thus, we try to stay as close as possible tc
exact solution. For the constant coefficient case (24) we define the contributions to
neighboring cells as

X, tn) if X e Vi

F.,j= /a)i (X —ta, t,) dx with w; (X, ty) = { 0 else

Vi

(26)

Vi

FIG. 3. Propagation of the exact solution in the constant coefficient case.
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The valuew!* can be given as
n+1 1 n 1
© = Z Fii=of — Vil Z (Fi.j — Fji), (27)
" jeNGE() ' jenGBi)

where NGB(i)={j € Z | Vi N V; # ¥} andNGB(i) = NGB(i)\{i } denotes the set of all
neighbors ofV;.

The basic problem for all of the finite volume methods in conservation form is that
numerical method defines the cellaverages on the newtime slice, butitneeds arepreser
of the solution at the old timg,. To obtain a high order method we first need a high ord
approximation of the solution; (X, t,) from the given cell averages’ and, second, a high
order approximation of the integral in (26).

To solve the first problem we use a reasonable reconstruction prR¢e8s(X, ;) for
the functionw from the cell averages" in the neighborhood df; the center of mass of
domainV;. We define

R (X, %) ifxeV,

0 else (28)

wi (X, 1) = {
or in short formw; (X, t) = R(o™) (X, Xi) xi (X) with x; the characteristic function of volume
V. From the reconstruction we demand that

lwi (X, th) — o (X, th)| < CAXP*Y  and /a)i X, t)dX = o

Vi

if o is generated by (X, t,) in (25). The method is of orday if the integration in (26) is
of orderp, i.e., the error isC AxP+1.

Some examples are shown at the end. It is possible to obtain fourth order accurac
smooth solutions as shown in Fig. 5. Even for discontinuous solutions the fourth ol
computation shows improvement over first and second order ones.

To solve the resulting linear equations in (22) we need to deal with the variable coeffic
case. The equations have the form (11) and the solution can be written in the form (12)
Zgiven in (13). Ifa is Lipschitz continuous, the characteristic curgég, t) andz(X,, t)
do not interact for an¥; # X, and anyt > 0. Thes function in (12) models the divergence
part of the characteristic curves governed by the ODE:

%a)(i(i, t),t) = o (ZX,1),1) + 8- Vo(E@X, 1), 1) = —0@ZX, t), H)(V - d).

Similar to (28) we define a reconstructiaft(X, tn) of » and a polynomial representation
3 (X) of the velocitya in each control volumé&,.

Since the equations in (22) result from the linearization of (10) we expant especially
anot to be smooth. Because of this, we move to a local representatigraafid; possibly
discontinuous to neighboring domains. We define as an approximation of the solu
o, th + At)

0 (X, 1, At) = /wi(y, )3 (X — Z(y, At)) dy,

RN
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0Z(Vy, at) Z(C, At)
"2 A »
A e 47
e ) 7:.;;1
’J.r ......... i ,.It z (G2.’&t)
, _1 / :I{/
._ , Z7(C, )
; . = A
Vs ¢ Z(B, Af)
A Z(A, At) Vo 4
-*—.1A ...... ———— - Vs
27 (A, at) v 2‘"1.(B,At)
Ve !

FIG. 4. Relation of forward and backward transformation for dom#jrand linear varying velocitg.

wherew; is defined as in (28) and is smoothly extended beyond the dom¥jn so that
the solutior®(y, At) exists. This models a superposition of adjacent cells.
The computation of the contributions is similar to (26) with

F,j = /wia(y(’ t, At) dX. (29)

Vi

For the update ta!"*, (27) is used.

To achieve second order accuracy, a linear reconstructian &mda is sufficient. Even
though the time integration f@ (X, r) leads to an exponential dependence pie spacial
mappingX — Z'(X, At) for fixed At is linear. Thus the boundaries of a rectangular domai
V; remain straight lines (see Fig. 4). Unfortunately, the linear representatian géts
destroyed in the transformationa@, which complicates the integration process in (29). Fo
these reasons, it is convenient to use the backward transformation. Formally, the exch:
of integration in (29) gives

F.j= //wi(y,t)S(f(—Z-a(y, At)) dydx.

ViV

The argument of thé&-function is now linear with respect to the inner integration. Quadra
ture of thes-function gives a relation between the poiftandy asX = Z(y, At) or

y = 71X, At). Under the same assumption®as beforey is given by the back transfor-
mation of (13) starting from poit and can be written as= 7(X, — At). The contributions
then have the form

Fij =/wi(2(>?,—At),t)xj(>?) dx.
Vi

with x; the characteristic function of;. Figure 4 shows the situation if the veloc#yis
assumed linear in ceil
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The domainG; in Fig. 4 is one of the diagonal contributions frovg to V. The set
Z(G,, —At) is the origin of all points that move intG, during timeAt. The exponential
time dependence needs a second order time integration to keep a second order accu
space and time.

Some test calculations for the rotating cone problem using a fourth order methoo
shown at the end. The fact that the velocity is linear in space is used in this example. A1
order reconstruction @ was sufficient to achieve this result. In general, the implementati
is only second order accurate in space and time.

6. NUMERICAL EXAMPLE

The first set of examples illustrates how simple high order accuracy can be obta
for the scalar equations. Figure 5 shows the convergence history for a smooth solu
Initial conditions are in all examplasg(X) = exp(—|X — B|2). The triangles and the cir-
cles represent the second and fourth order solution of the constant coefficient case
a= (1, 1)". The squares indicate the solution for variable coefficients aitky, o) ") =
(—X2, X1)T. The dashed lines show an exact second and fourth order convergence his

We use this method to solve the resulting linear equations in (22) for each compor
The next example shows the influence of the correction terms. As initial values for
1-D problem, we use the constant stdtks= (3/4,1,7/3)" andUg = (1,1, 3)T from a
steady shock fojx| > 1. For the values ai| < 1 we pickU(x, 0) such thatJ(x, 0) € C?,
i.e., the initial data are smooth enough. Integration is stopped before the formation o
shock. Table 2 shows the result for the Euler equations. Here, V1 denotes the calcul
with correction terms and V2 without them. The estimated error is more than two orc
of magnitude smaller for V1 than V2. The; error for V1 shows a nice second ordel
convergence and even the maximum error decays faster than first order. For the s
shock, only one of the characteristic velocities changes sign. Thus only one of the w
has the observed degeneracy of the maximum error. The other waves also have secon
convergence in the maximum norm. Without the correction terms, the solution is only
first order in any norm.

convergence history for scalar equations

10° |

10° F

10* |

10° |

10° |

10°

10° |

10" |
10° 10"

FIG.5. Convergence history for smooth second and fourth order solutions of a scalar advection equatic
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TABLE 1
Convergence History for the Euler Equation with Smooth Data
in Two Space Dimensions

Euler equation 2-D

n G L, Order

18 Co Ly

36 3.8e-2 5.0e-3

72 2.6e-2 8.3e-4
144 8.0e-3 1.8e-4 1.704 2.165
288 2.2e-3 2.4e-5 1.879 2.445
576 6.4e-4 6.8e-6 1.768 2.320

The first 2-D example for the Euler equations consists of smooth perturbations in
density, velocity, and pressure. We yge= 1, p, = 1.1 for the density perturbationg = 0,
u, = 0.1inthex-velocity,v; =0, v, = —0.1in they-velocity, andp; = 1.0, p, = 0.9 inthe
pressure. In the computational doma#®] 2]? we used a radial symmetric function to con-
nect the two values. The center of the perturbations is locatdd2itl/2)", (1/2, —1/2)7,
(—1/2,-1/2)7,and(—1/2, 1/2)" for densityx-velocity, y-velocity, and pressure, respec-
tively. Table 1 shows the convergence results. They are similar to the 1-D example.

Next, we come to discontinuous solutions and show the results for the Mach reflect
problem in [1]. The physical domain is,[@] x [0, 1] with a spatial discretizatiolhx =
1/15 andAy = 1/20. The boundary conditions are hypersonic inflow at 0 andy = 1
with the values op, (u, v)T andp givenag(1, 2.9,0, 5/7)T and(5/3, 2.61934 —0.50632,
1528197, respectively. Aty = O reflecting boundary conditions are used and at 4
hypersonic outflow is applied. The upper part of Fig. 6 shows the density contours :
the lower part a horizontal cut gt= 0.525. The good stability property allows a second
order computation of this example without any limiter (see Fig. 6). To obtain a monoto
solution nearly any slope limiter will work in this example. Investigations in [3] shov
that most of the limiters reintroduce a grid dependence on the underlying grid. This

TABLE 2
Convergence History for the Euler Equations

Euler equation

Co-error L.-error Order

n Vi V2 Vi V2 Co Ly

20 5.1e-3 1l.1e-2 7.9e-4 1.4e-3 Vi V2 Vi V2
40 2.5e-3 3.8e-3 2.5e-4 5.4e-4 1.041 1.521 1.634 1.354
80 8.4e-4 1.7e-3 5.4e-5 2.6e-4 1.570 1.155 2.228 1.057
160 2.2e-4 9.5e-4 1.0e-5 1.3e-4 1.909 0.845 2.386 0.998
320 6.9e-5 4.9e-4 2.4e-6 6.6e-5 1.700 0.936 2.124 0.977
640 2.2e-5 2.5e-4 5.8e-7 3.3e-5 1.647 0.972 2.026 0.988
1280 7.1e-6 1.3e-4 1.5e-7 1.7e-5 1.622 0.986 1.989 0.992

Note V1 with and V2 without correction terms.
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FIG. 6. Density contour lines for the shock reflection problem (upper picture) and dengity &525 with
and without the limiter (lower picture).

an undesired effect since the method was designed to avoid this effect. Some po:s
strategies are derived in [3] to solve this problem. Basically two solutions without a limi
are computed: one of first order as a reference and a high order solution. In a next step
solutions, now independent of the grid orientation, are compared to each other, and the “
i.e., the contributions, are limited such that newly generated high order extrema do not ex
the first order reference solution. This replaces the direction wise limitation and retains
multidimensional character of the method. The solution is plotted after 300 time steps.
residual is not decreased to machine accuracy due to the limiter function. Without the lin
the solution converges to the steady state with small oscillations close to the shock (d
line in Fig. 6).

The last problem is the forward facing step problem in [11]. A Mach 3 flow hits a st
in the geometry. In the context of the method of transport, the boundary conditions
naturally included for this example. No special treatment of the corner is necessary.
geometry produces a nonphysical peak in entropy close to the corner but this perturbat
local and does not influence the solution downstream as for other methods [5]. The si
shock reflection at the bottom and the almost vertical contour lines of density at the Ic
left part of the flow indicate no or only a weak entropy layer (see Fig. 7).

7. CONCLUSIONS

The multidimensional linearization of the Euler equations offers a simple way to obt
high order methods that are independent of the space dimensions. The solution of a
linear system of equations is reduced to a finite number of linear problems. This provic
better understanding and control of the numerical solution beyond the 1-D Riemann p
lem. The reduction is independent of the numerical method and the discretization used
numerical implementation needs to meet the requirement of high accuracy for the si
case.
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FIG.7. Solution to forward facing step problem. Density contours (upper picture) and entrppy @t(lower
picture).

The derivation shows that this linearization can be achieved for any system of conserva
laws as long as a decomposition of the state vector and the flux in terms of the Mo
possible. For the shallow water equation there exists such a decomposition as shown i
and thus all the results carry over. Application to Navier Stokes [8], plastic-elastic we
propagation, and MHD is in preparation.
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